Two dimensional noncausal AR-ARCH model: Stationary conditions, parameter estimation and its application to anomaly detection

نویسندگان

  • Saman Mousazadeh
  • Israel Cohen
چکیده

Image anomaly detection is the process of extracting a small number of clustered pixels which are different from the background. The type of image, its characteristics and the type of anomalies depend on the application at hand. In this paper, we introduce a new statistical model called noncausal autoregressive–autoregressive conditional heteroscedasticity (AR-ARCH) model for background in sonar images. Based on this background model, we propose a novel anomaly detection technique in sonar images. This new statistical model (i.e. noncausal ARCH) is an extension of the conventional ARCH model. We provide sufficient stationarity conditions and develop a computationally efficient method for estimating the model parameters which reduces to solving two sets of linear equations. We show that this estimator is asymptotically consistent. Using matched subspace detector (MSD) along with noncausal AR-ARCH modeling of the background in the wavelet domain, we propose an anomaly detection algorithm for sonar images, which is computationally efficient and less dependent on the image orientation. Simulation results demonstrate the performance of the proposed parameter estimation and the anomaly detection algorithm. & 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Kalman Smoothingof Ar Signals Disturbed by Impulses and Colored Noise

In this paper, we describe a new and computationally efficient adaptive system for the enhancement of autoregressive (AR) signals which are disturbed by additive white or colored noise and impulsive noise. The system is comprised of an adaptive Kalman filter operating as a fixed lag smoother and a subsystem for AR parameter estimation. A superior performance is achieved by implementing a feedba...

متن کامل

Model Parameter Estimation for 2D Noncausal Gauss-Markov Random Fiel

An original procedure for estimating the model of a noncausal Gauss-Markov Random Field (GMRF) bservations is proposed. Starting from a suitable ’local’ on of the field and taking into account the symmetry the so-called ’potential fields’ [3] describing the GMRF, uation system relating the model parameters to the on-stationary) 2D autocorrelation function (acf) of the ld is derived. Its solutio...

متن کامل

A Constant False Alarm Rate Focus Detector Using 2-D Noncausal and Nonstationary WNDR Modeling

~ i = f 1 i k w i (1) (40 chf where the N is called neighborset of the representation whose shape determines the model causality. Previously, only causal and stationary WNDRs were fully used for the lack of an efficient parameter estimation technique to estimate the parameters fr. I of the general noncausal WNDR which represents the gray level at one point as a linear canbination of its neighbo...

متن کامل

Microsoft Word - Anomaly6.docx

Robust subspace mixture models for density estimation of high dimensional data with an application for anomaly detection, are described. The essence of the proposed method is as follows: First, we learn a low dimensional representation using Whitened Principal Component Analysis (WPCA), then the source multidimensional data is projected onto this subspace and the density of its data points is e...

متن کامل

Asymptotic Behavior of the Sample Autocovariance and Autocorrelation Function of the Ar(1) Process with Arch(1) Errors

We study the sample autocovariance and autocorrelation function of the stationary AR(1) process with ARCH(1) errors. In contrast to ARCH and GARCH processes, AR(1) processes with ARCH(1) errors can not be transformed into solutions of linear stochastic recurrence equations. However, we show that they still belong to the class of stationary sequences with regular varying nite-dimensional distrib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 98  شماره 

صفحات  -

تاریخ انتشار 2014